Quite Hot Imposing 6.0 Advanced: variables (beta 1)

Contents
Quite Hot Imposing 6.0 Advanced: variables (Deta 1)ooociiiiiiiiiieeceee et e 1
Variables: SEtHING IN SEQUENCES......cccuiiie et cctee et e e e e e et e e e et e e e e e sabae e e e abaeeeesasaeaeennseeeeennnens 2
LY N Y Y A T= o] (=TSP PR 2
Adding variables in a sequence of COMMaANAS.........ccciiiiiiie i e e 3
Setting the variables — USING fIl@NAMEScoeeii i e e e e e 6
Setting the variables — another way (file in IN fOlder)oooociiiiieiiieieee e 9
File Names iN Variablesoo ittt st s 9
Page sizes / backgrounds in Variables.........ceccueirieiiiieiiie ettt s e e e 10
Dimensions in variables (inches, MM, POINtS €TC.) ...cccuiiiiiiiiee e e e 12
Lists in variables (list of page numbers, list of SPACING €tC.) .vvieeiriiiieiiieeecee e, 12
Variables in the Condition COMMAaNGc..ciiiiiiiiiiieeee et e 13
Case independent variable NAMES........ccuiii e st e e 13
Variables: using variables with watched folders.........cccoooiiiiiiiii e 13
Using filters to set variables from file NAMESoooe e 14
Multiple filters for the same iNPUL folderuviiiieeii e 14
Introduction to variable settings filles ... 15
Variables: using variables with ENfocus SWItChcc.eeiiiiiii i e 15
Importing Switch private data as Quite Hot Imposing variablescccccceevvieiicciiee s 16
Setting variables from submit point “fields” XML formatccccceeeeeciiiiiieie e, 16
Setting variables using filename filterooo o 17
Working with SWitCh “USEr fIeldS”ooo i e e e e aaaee s 19
Making Switch datasets available in Quite Hot IMPOSING.......ccoecviiiiiiiieeeccee e 19
Passing export variables from Quite Hot Imposing back to Switch private dataccccceeeeeeennes 20
Variables: command INE OPLIONS ...eeeiei i e e e e e e e et e e e e e e e e e anereeeeeaaeas 21
SELEING VATTADIES ... e e e e e e e e e e e e e e e et aae e e e e e e e anaraaaeaaaaas 21
USIiNg filters 10 SEt VAriableS.....ccuvviiiieie e e e e e e e e ar e e e e e 22
Legacy feature — USEr Variablesccueiiiiiii ettt e e e e bae e e e aae e e e 23
SPeCifying variables t0 EXPOIt e e e e e e e e e e et raeeaeean 23
Specifying how variables are eXported.........coo i e 23
AV T e o] LT oo T =11 (oY o PSP 23
Using expressions (Calculated ValUES).......ccuuviiiiiiiiieee sttt e e e 23
Arithmetic details (AVANCE)uveeeiiiiiiii e e e et e e e e e araeees 24

Quite Hot Imposing 6.0 Advanced: variables (beta 1) 1

Strings in exXpressions (AAVANCEA).......ciiciiii it e s st e e et r e e e eenraeeeeans 25

Booleans in expressions (AdVaNCEA)cccciiieiiiiiieeeree st e e e e sbre e e e sbae e e e aree e e nanes 26
Controls in expressions (AAVANCEM)ccueii ittt e e et ee e e e eatr e e e eear e e e e eearaeeeeans 27
Files, filenames and jobname in expressions (advanced).......c.coccueeeeeiieeeeciiee e 27
Page size fuNCtions (AAVANCEA).......cciccuiiii i e e e e e e e ae e e e 28
Quite Imposing fields (AAVANCE)oei it e e s eer e e senraee e eans 28
Variables: Variables settings fileS......uuu e e 29
TEXE FOIMIAT .. e e st e s e e s e e s e e e s e e e e e e e e e e nanes 29
Other commands in @ variables file ... 30
Using the Set Variables CoMmMandooooiiiiiiiiii e e ree e e e 30
Other variable file fOrmMats.........cooi it 31
XML FIelds FOrMAt .ecoeeieiiie ettt et e sa e s e e sab e sbee e smreesneeesaneenas 31
<field-list> <field> <tag>namel</tag> <value>valuel</value> </field> <field>
<tag>name2</tag> <value>value2 </value> </field> </field-list>........ccccevverrivrerriieerreerecrennnn, 31
USING Variable fllES .oeiieiiiie i e e e s e e et e e e e abae e e eabtee e esabaeeeennseeeeennnees 31
Export of variables and variable fil@S ... i 32
Managing the list of names to be eXPorted.........cevve i 33
Working With COmMMaNd reSUILS.......cuuiiiiiieee et bae e e e are e e e eanes 33
RESUILS @VAIlaDI@...cueiiiieiee et e e s 35
Variables: specifying variables in XML command SEQUENCESccccuveeereiieeeeeiiieeeesreeeescrreeesnveees 35

Variables: setting in sequences

Why variables?

Sometimes, we need to change aspects of a job. Quite Hot Imposing is adaptable, for example Step
& Repeat can fill a page with copies of an original without you needing to choose rows and columns.
But there are times we might need to change items from one job to another.

Below we have an example of a job which can make copies of a page, and you can change the
number of copies without having to edit the sequence or XML file. The number of copies is a
variable, and we give it a name. We use the new features of Quite Hot Imposing 6.0 to say that the
number of copies is a variable, instead of a fixed number.

There are a number of different ways to set the values of variables. For example they can be pulled
out from the file name, so you could just make a file called LAYOUT APRIL-2,3 and define that the 2,3
are the number of rows and columns. Variables can also work automatically for Enfocus Switch
customers — setting the variables as “user parameters” which can be used directly by Quite Hot
Imposing.

Quite Hot Imposing 6.0 Advanced: variables (beta 1)

Adding variables in a sequence of commands

This takes us through the steps of adding a variable to a sequence of commands. In this case, we
want to make a variable number of copies. None of this can be done in Quite Imposing Plus, Quite
Hot Imposing 6.0 or later is needed.

This is the normal “Page Tools” dialog for creating copies.

Page tools x

Dwplicate pages bove pages Delete pages Rotate pages

Duplicate which pages?
("

{+ Entire document

" From page number |1 o |1

tultiple copies

Copies: |2

Collate: * Yes[123.123.] Ma[111..222.]

k. Cancel

The number of copies must be a fixed number, so it is the same each time this command is used.

1. To make a sequence with variables, we start by switching this “Allow variables in
commands” on in the sequence editor.

Quite Hot Imposing 6.0 Advanced: variables (beta 1)

Mew XML command list

To add commands for automnation, select them in the left hand column and click Add. Either
1. Select a command name. “'ou will be prompted for the command optiong. Or,
2. If vau have uzed Remember Last, the saved commands will be shown, and are added without an estra prompt.

- b arwal inpozition: start ~ Irnpart...
- Meszage

- M-up pages

- Page toolz

- Peel off PDF pages Add x

- Peel off data merge
- Peel off mazking tape
- Peel off registration marks
- Peel off text and numbers
- Heverse pages
- Shuffle evendodd pages
- Shuffle pages for imposition
- Split/t erge [Partials]
El- Step and repeat
steprepeat 32246 Tom edge e

v Allow vanables in commands [advancedf

didida

Cancel

2. Now we add a Page Tools command. This shows a new “V” button next to the number of
copies (and other items we could change). We click the “V” next to Copies.

Page tools et

Duplicate pages Move pages Delete pages Rotate pages

Duplicate which pages?
i

{* Entire document

" From page number 4 |1 o 4 |'|

L1230 F Mo[111..222.]

k. Cancel

Quite Hot Imposing 6.0 Advanced: variables (beta 1)

3. We see New variable dialog. There are several choices. It suggests a variable name, copies.
This seems as good a name as any, so we just click OK.

Mew variable

Enter a wariable name, or uze the suggested name.

* iJse the suggested name [copiesk

" Type anather name
Copies

" Enter an advanced expression

(] | Cancel

4. Now we return to the Page Tools dialog. We see the “V” button has changed to “V+”. This is
how we can see which variables are set. If we clicked V+ we could change the variable name,

or delete the variable so it returns to a fixed number of copies. Also, if we hover the mouse
over the “V+” button, it shows the variable name (yellow box).

Quite Hot Imposing 6.0 Advanced: variables (beta 1)

Page tools et

Duplicate pages kove pages Delete pages Rotate pages

Duplicate which pages?
i

* Enhire docurment

" From page number 4 |1 oy |1
Copies: W+ |2

Collate: ﬁ“ 3|23 Ma[111..222.]

] 4 Cancel

5. Now we click OK a few times and we have created a new sequence with a variable.

Setting the variables — using filenames
To pick up variables from a filename, you set a filter for the queue in queue setup.

Quite Hot Imposing 6.0 Advanced: variables (beta 1)

&) Modify a hot folder queue - 2 *

.) The zecond step iz to chooze the work, which will be done when a PDF file amives in the 'in' folder. This iz
W yzually done by taking an imposition prepared earlier.
" Use an exizting PDF or =ML file to contral the hat folder

* Usze named automation sequences [compatible with Quite Imposing Plus]

Autamation sequences

Categary: |.-’-'-.ut|:|mati|:|n TEOUENCES

Mame: |S&H varable size

|
=~
Search: | J

Created: 10 Jun 2024 21:22:09
Jpdated: 11 Jun 2024 03:14:56
Played: unknaown [0 times]

You can create a new zequence by selecting commands, or you can do ‘impozition by example’ by just importing
commands from any impozed file.

Tao start, click Create new sequence. .. | o |mport/export... |

Manage automation sequences Manage... | Edi... | Delete... | [delete zequence not hot falder)

Filter on filename

[f you et a filker, the quele will check and only run files that match. IF you have vanables, pou can alzo set

variables in the file name

Fiker: Setup... | Handles files and waniables: *-<copies:'

Chek Mest ta continue.

Ment Back Cancel

We made a sequence above, with a single variable, copies. We can allow the user to set the number
of copies in their file name. A typical way is to have the number of copies at the end of the name,
maybe with a dash (-) first. So, files called WORK-35, File 234 3 May-35 and XX-35 all want 35 copies.

Quite Hot Imposing 6.0 Advanced: variables (beta 1) 7

For this we use a filter of *-<copies> as shown in the screen shot below.

File name filter >

You can zet a filker o this gueus only handles certain file names. Then vou can have multiple queues with
the same IM folder and different filkers

" Mo filker - accept all files

" Filer - zelect files by name

{* Enter a filter string with vaniables [advanced)

Enter a filker string. “'ou can uze special characters™ and 7. Include variable names between <> such
az <rowss. Set up varables in the sequence editar.

*.¢oopiess|

.":".pr"{fﬂb;\'S}'{ colsx matches Alpine-2-3.pdf but not SALP-4-3 ar SALP-4.
SUMZ< county matches SUMZES2 or SUNZEAZ2 pdf but not SUMH DAY 42,
o < coler count matches Anything-2,3,42 but not Anpthing,2,3

k. Cancel

Reading through the filter *-<copies> we see

1. An asterisk/star (*) which means “any number of characters”. It doesn’t mean an asterisk in
the filename, which probably isn’t even allowed.

2. Adash (-). This means just what it says — the file needs to have a dash. If the file doesn’t
have a dash, it won’t match the filter, and it will stay in the IN folder, unless another queue
has a different filter that picks it up. Dash is convenient, but it could be any character that
isn’t going to be otherwise used in the filename, including a space. You may wonder if you
need a separator here, but you do need it, because otherwise Quite Hot Imposing doesn’t
know where the variable starts.

3. <copies> says there is a variable copies. The <> signs don’t appear in the filename (and
probably aren’t even allowed in the filename).

Any .pdf in the filename is ignored. So a file called THIS FILE-27.pdf will set copies to 27.

The setup will check and warn you if you don’t include all the variables, or if you use names that are
not actually a variable (perhaps a spelling mistake). You can ignore the warning. Sometimes, for
example if you set variables in a Condition command, Quite Hot Imposing cannot tell in advance
whether you are setting a variable. It also cannot tell if some variables will be set in another way,
such as a variables file.

Quite Hot Imposing 6.0 Advanced: variables (beta 1)

Setting the variables — another way (file in IN folder)

Another way to set variables, which may be more suitable if using more automation, or if there are
too many variables for a filename, is a variables file. Here we show how to set a variables file in the
IN folder. First we make a qvars.txt file, to set copies. Here's a screen shot of Notepad

| *Untitled - Notepad — O >
File Edit Format WYiew Help
ccpies=5ﬂ|

Ln1, Col 10 100% Windows (CRLF) UTF-8

We could save this to the IN folder in Quite Hot Imposing, and this variable is available to all the jobs
which pass through that queue. We can edit the file as needed, and the file stays in the IN folder.
There are other ways to set variables, this is just the simplest for testing. The variables will not affect
other jobs which don’t need them. Variables set in a file name, with a filter, will take precedence
over a variables file.

File names in variables
Some commands refer to a file. This includes

e Insert pages from file

e Stick on PDF pages

e Any background file used (see Page sizes / backgrounds in variables)
e Variable data merge (data source file)

These have a “V” button and are set like any other variable. Note the following when a variable
holds a file name.

o The full file name (system path) must be given, including a directory name. For example
o Alocal file in Windows: c:\users\appdata\user32\documents\pdf sizes.pdf
o A network share in Windows: \\servername\folder\file37.csv
o Afile in Mac: /Volumes/Macintosh HD/Files/myfile.pdf or
/Users/user32/Documents/insert pages.pdf
e Any network shares must already be mounted
e The directory name must be used. If just a name is used, without a directory, it might
randomly work or not work.
e File names are strings, and can be constructed with operators like LEFT, SUBSTR or CONCAT.
e Where variables are read from a variable file, note that \ is a special character, and must be
written as \\. For example c:\dir\file.pdf must be written as "c:\\dir\\file.pdf" and
\\server\dir\file.pdf must be written as "\\\\server\dir\file.pdf".

Quite Hot Imposing 6.0 Advanced: variables (beta 1) 9

file://servername/folder/file37.csv
file://server/dir/file.pdf

e File names with directory separators cannot be used inside another filename when working
with filters.

When variable data merge is set up, the list of field names must be known. The only way to get the
list of field names is to read a data source file. So when you click “V” to set a variable for the data
source, you will also have to choose a model data merge file. This is read to find the field names. The
actual file (from the variable) must have all the same fields (but the columns need not be in the
same order, and it could have extra columns).

Page sizes / backgrounds in variables
Many commands use page sizes. There are some complications to using these with variables.

1. A page size has two values, width and height.

2. Insome commands, a background file can be specified instead of a width and height. There
are other values associated with backgrounds, such as number of pages to repeat.

3. The page size is normally chosen from a pull down, rather than typed in as part of the setup.

For this reason, the “V” button for variables works differently with page sizes. Here is a page size in
the “Adjust Page Sizes” command.

T arget zize or zcale

* Thiz zize : % 11.69 in)

fo Tal 7 Wwide

At the moment this shows there is no variable, and the size shown will be used. If we click “V” we
see:

Edit page size/background x
Simple variable: 5 { Pagesize

Width waniable: width |wiu:|th inches

Height variable: height |height inches

Delete wariable. .. | (] | Cancel

This is set up to quickly allow you to define names for both the width and height (with a suitable
default). If you want more complex setup, click Page size and use “V” buttons as normal.

The screens above were from “Adjust page size”, which does not allow a background. If we were to
click the “V” next to page size in “N-Up pages”, we see instead:

Quite Hot Imposing 6.0 Advanced: variables (beta 1) 10

Edit page size/background x

o eg (Pagesize ¢ Backaround file
"width variable: width |wiu:|th inches
Height wariable: height |height inches
[v Bestfit

Delete variable. .. | (] | Cancel

Notice the “Best fit” option on here, because we have no other way to select it once the page is a
variable size. If clicking Background file we see

Edit page size/background x

L Browse. .. ﬂ

* | wank to uze the entire file as backgrounds, again and again.

| want to uze the entire file as backgrounds, once per imposition, then stop.

" | want to do zomething more complicated.

Delete variable. .. | (] | Cancel

So the background file can be a variable. It is a filename, see above. Most of the selections are not
variables, but if we choose “I want to do something more complicated” certain options, like page
numbers, are variables.

Quite Hot Imposing 6.0 Advanced: variables (beta 1) 11

Edit page size/background x

(" Simple varables Page size ™ Background file

W |Browse... ﬂ

—

| wank to uze the entire file as backgrounds, again and again.

| want to uze the entire file as backgrounds, once per imposition, then stop.

* | want to do zomething rmore complicated
Usze pages from W |0 o w0

* Then repeat those pages again and again

" Then stop

" Then epeat the last % |0 af thoze pages again and again

Delete variable. .. | (] | Cancel

Dimensions in variables (inches, mm, points etc.)

Dimensions are often used in commands. For example, they might be the size of a page or an offset.
When working in the user interface, dimensions are automatically handled according to the current
preferences (inches, mm, points, cm or pica). On the other hand, in control files all dimensions are in
points (1/72 inch). Users working with variables may expect to be able to enter variables in a
particular unit, rather than convert everything to points.

For this reason, when a variable is defined in the user interface, the units are also saved. The value
selected for the variable is also converted to points, even if it is specified as a string. This means that
if the units are changed in preferences, the old unit preference continues to be used. The alternative
is worse; the alternative would mean that an end-user changing the preferences for a single task
breaks all the other workflows based on variables.

The conversion of units happens only as the command is executed. It does not affect the value of
any variable used in calculations etc.

Lists in variables (list of page numbers, list of spacing etc.)
Users often need to enter lists. For example:

e In Shuffle pages, there is a list of page numbers and other characters to be used as a rule
e In N-Up, advanced margins and spacing, there may be a list of spacings. These are
dimensions.

Lists of numbers must be entered as strings, containing the numbers. For example, to specify a
shuffle rule you could use RULE="4 12 3".

Lists of dimensions must also be entered as strings, containing the numbers in the selected unit
(inches, mm, points etc.) exactly as in single dimensions.

A number of functions are designed so they can process entire lists. For example INPT(x) can be used
to convert a single value from inches to points, but it can also convert a list of values, each one is
converted to points to make a new list. The functions that are useful for lists include:

e INPT, MMPT, CMPT to convert inches, mm or cm to points — INPT(2) is 144.

Quite Hot Imposing 6.0 Advanced: variables (beta 1) 12

e PTIN, PTMM, PTCM to convert points to inches, mm or cm — PTIN(144) is 2.

e MIN, MAX can return the minimum or maximum from a list — MIN(3,1,2) is 1.

e LIST can make a list from separate values — LIST(1,2,3) is "1 2 3".

e |NLIST can fetch a value from a list — INLIST("10 9 8",2) is "9".

e PAGESIZE, PAGEWIDTH, PAGEHEIGHT return a list of page sizes for a range of pages.

Variables in the Condition command

The Condition command is used to decide between different sequences of commands. It can be set
up to use variables rather than, for example, page sizes or number of pages. This does not use the
“V” button found in most other variable references. Instead, select What to check: variable. You can
then enter a variable name or an expression.

The variable name, or the expression, must have a value of "TRUE" or "FALSE". No other value is
allowed (it will give an error), but see the BOOL() function for converting a number into "TRUE" or
"FALSE". Expressions such as comparisons will return "TRUE" or "FALSE". Examples:

e ROWS=2

e ISODD(TARGET_PAGES)

e CONTAINS("M3",JOBNAME())
e AND(ROWS >1,COLS >1)

e ISEVEN([Doc:NumPages])

Case independent variable names

Variable names are case independent, but the variable names are preserved with their original case.
This works rather like file names in Mac and Windows. You can create a file called MyFile.txt, and if
you try to read myfile.txt or MYFILE.TXT it will read back the MyFile.txt file. The original case — the
name you first chose — will be used. In the same way, you could create a variable NumRows, and use
it as NUMROWS or numrows (or other possibilities).

Variable names can only contain unaccented letters and digits, so it is only the upper/lower case of
the unaccented letters A-Z which is relevant.

Once set, the mixture of upper and lower case in the name is not relevant, unless you later export
variable values., which preserves the original case of the variable name. If you export values for use
in Enfocus Switch this is important, since the user values (private data) in Enfocus Switch have case
dependent names.

Variables: using variables with watched folders
There are different ways to use variables with watched folders

1. (Recommended) Set up a “filter” so that the variables are picked out from the file name.
2. (Recommended for automatic systems) Use a variable settings file gvars.txt. The setting file
can be
a. Storedinthe IN folder
b. Provided in ajob folder.
3. Use avariable settings file, and a command line option to specify the settings file.
4. Use command line options to set each variable.

Command line options are specified under Advanced setup, available from setup dialog 3. For
working with command lines for variables, see Setting variables.

Quite Hot Imposing 6.0 Advanced: variables (beta 1) 13

Using filters to set variables from file names
It’'s easy to set up variables from the name of your file. This lets you choose options like number of
copies, rows or columns just by carefully setting the file name. Here is an example

TUESDAY_ADVERT_273!44-3-2.pdf

In this example, we’ve used 44, 3 and 2 as the variable values. (The 273 is just part of the regular
name). We need to tell Quite Hot Imposing how to read these names, by typing a filter. To do that
we need to know the names of each variable we want to set. Let’s suppose that they are copies,
rows and columns. And we want to use them in that order.

The filter we use is
*1<copies>+<rows>+<columns>

Let’s break this down. The * at the start means “anything”, that is the normal part of the name.
Actually, almost anything. The normal part mustn’t have a ! mark because that is what starts the
variables.

You can see that the filter has the names of the variables we want to use. We always put them like
this <name>. There is no < or > in the actual filename, this just tells Quite Hot Imposing that we have
a variable name.

The other things we see are ! (before <copies>) and + (between variables). These symbols ! and + are
not special, they are just what we want to put in the file name. There could be any number of
characters, including letters. Here are some different ways we might set for those three variables.

*.-<copies>-<rows>+<columns> example UPDATE_BOOKLET--44-3-2.pdf
*$(<copies>+<rows>$$<columns>) example PIC PAGE 1$(44+3$S$2).pdf
* K-<copies> R-<rows> C-<columns> example LEGEND_42 K-44 R-3 C-2.pdf

The names have to exactly match. If they don’t match there will be an error message, and the file
will not be processed, because you probably don’t want to run a job without the settings.

This filter will force the variables to be at the end of the name. But if you want to allow more info
after the variables, just put a * at the end. If you want the variables to be at the start, remove the *
from the start.

You must have a separator between variables. For example you could not put <rows><columns>
directly because there is no way to know when <rows> finishes and <columns> starts. You also
cannot have an asterisk (*) immediately before or after a <variable> reference, there must be at
least one character between them.

Some characters aren’t allowed, often because they aren’t allowed in file names. Never use any of
these: colon (:), forward slash (/), backwards slash (\), vertical bar (|), curly brackets ({ or }) or square
brackets ([or]). In Windows, you must not use question mark (?), double quote (") in a file name.

Multiple filters for the same input folder

Before Quite Hot Imposing 6.0, it was not possible to start two queues at the same time if they used
the same input folder. From 6.0, it is possible to set up multiple queues on the same input folder,
which use filters to decide which work to do. There is independent of variables.

Quite Hot Imposing 6.0 Advanced: variables (beta 1) 14

e You can start multiple queues with the same input folder provided that a filter is set on each
of the queues.

e When queues have filters, they are checked in the order of their queue number. The first
gueue to match will do the work.

e You can add a “catch all” filter — such as just an asterisk (*) —to pick up files for which no
other filter is defined. These must be the last one for the queue — otherwise it will never
check the later filters.

e You can right click on a queue and choose Move to rearrange the queues to suit the filters.
Note that you must restart Quite Hot Imposing before the changes to ordering take effect.

Introduction to variable settings files
A gvars.txt file is a variable setting file, or the same information listed in a “Set variables” command
in a sequence. It is a text file with a simple format. For example:

Here are my variables
totalrows=2
totalcolumns=3
title="Sample job title"

Full details on Variables: Variables settings files are available.

If you put a file called gvars.txt in the IN folder for a queue it remains there until you delete it, and
affect all jobs in that queue. Each queue could have a different gvars.txt file.

Job folders allow you to drop a folder into the watched IN folder, and receive a single PDF. All the
PDF files in the job folder are combined. (For more details on job folders, see
https://www.quite.com/hotimposing/job folders.htm) . When using job folders, you can add a
gvars.txt file to the job folder itself, along with the PDFs to be combined. A job folder could contain
only a single PDF and gvars.txt.

Variables: using variables with Enfocus Switch

Quite Hot Imposing 6.0 has a number of changes designed to make integrating with Switch much
simpler than in older releases. The latest version of the Quite Hot Imposing configurator or Quite
Hot Imposing app for Enfocus Switch includes a new option “Connect Switch metadata”.

B et

| Other options

Connect Switch metadata
; User field 1
| User field 2

User field 3

Write output XML No

If you do not see this option, please update the configurator. (All versions of the Switch app, used in
Switch 2023 and later, have this option).

This option is off by default. If you select Private data + datasets, this option has three effects.

1. Import all suitable Switch private data from the job as variables to Quite Hot Imposing.
2. Make all Switch datasets from the job available in Quite Hot Imposing.
3. Pass back exported data from Quite Hot Imposing, to set Switch private data in the job.

Details on these three effects follow.

Quite Hot Imposing 6.0 Advanced: variables (beta 1) 15

https://www.quite.com/hotimposing/job_folders.htm

Importing Switch private data as Quite Hot Imposing variables

In Enfocus Switch, user variables are called ‘private data’. Private data is set using JavaScript. In the
Switch configurator or app for Quite Hot Imposing you can select the option Connect Switch
metadata.

Other options

Connect Switch metadata
User field 1
User field 2

The default is ‘no’ so no info is passed from private data to Quite Hot Imposing. If you select ‘Private
data + datasets’ then all the variables set in private data are automatically available as variables in
Quite Hot Imposing (provided they have a simple name — for example private data called “Top list”
or “Alpha-2” cannot be used).

A simple way to set private data is using the Enfocus Switch App ‘Script Private data’. This allows you
to set private data from script expressions, which can be as simple as typing a number.

Flows (=
MName

New flow
Step & repeat ...

In2

Qut (imposad)

o . &
Script Brivate data)
Step & repeat ...
Step & repeat ...

b
‘ In -
Step & repeat ... Leg

Step & repeat ...
Step & repeat ...
PCL job flow 1 ...
it Hat Nun (7

Error

o Propertiac /X Inhg

@ Define script expression: Private data seript 1 [m] X

Property alue

Element type

B Legacy seripting
Name i} : | ! [
Description Enter a JavaScript expression that evaluates to a string value

Private data key 1 copies ke
Private data script 1 Script expression define

Private data key 2

Script Private data

Private data script 2 None

Private data key 3

Private data script 3 None

Private data key 4 i
Pr!vate data script 4 None Line: £ Col 1
Private data key 5

Private data script 5 None

Open Save Save as...
OK Cancel

In this example, a Script Private data element is added to a flow. The screen shot shows the
properties of the Script Private data element. Private data key 1 is copies, and private data script 1 is
just the script “42”. This will set the Quite Hot Imposing variables copies=42.

Setting variables from submit point “fields” XML format

In Switch, there a number of ways to make XML datasets attached to the job. We are looking at a
particular format (“schema”) of XML created by Switch Submit Points and Checkpoints. This format
is described under Variables setting files — XML fields format. This can be a very simple and
convenient way to set Quite Hot Imposing variables directly from a submit point without scripting.

Quite Hot Imposing 6.0 Advanced: variables (beta 1) 16

For the Submit point in Switch you choose “Enter metadata: Yes”. You can then define metadata
fields. The only item you must always fill in is “Label”. This label does two jobs: it is the prompt when
the user connects to the Submit point, and it is the name in the metadata. So, if you set Label to
“copies”, for example, you can use a Quite Hot variable called copies, and the user is prompted for it
each time they submit work.

The prompt and the metadata name are the same, which may make for very long metadata names,
and might contain spaces. Quite Hot Imposing applies several rules to simplify this. The rules apply
to the prompts/variable names only, not to what the user types when prompted.

1. Any space in the prompt is replaced by an underscore.

2. If the prompt contains parentheses (round brackets), everything is ignored except the part
inside the parentheses. For example a prompt of “Number of columns (cols)” will set a
variable name of “cols” only.

3. After these changes to the prompt, if there is anything other than upper or lower case
unaccented English letters, digits, or an underscore, then no variable is set.

So, you might have a label of “Width of pages in mm (width)” which shows all of this text as a
prompt, but sets a variable name of “width”.

Now, you just need to make Quite Hot Imposing pick up this information from the dataset. To start
with you must set “Connect Switch Metadata” to “Private data + datasets”. Each Submit point and
Checkpoint has a dataset name. These names will usually be different, as Switch will not combine
the information. The default dataset name for a submit point is just “Submit”.

So you need to tell the Quite Hot Imposing app/configurator to read from the dataset “Submit”. The
simplest way is to add the extra option (command line option) -switchfields "Submit". If you have
multiple datasets, you can list them all. For example -switchfields "Submit,Checkpoint1".

Setting variables using filename filter

It’s possible to have Quite Hot Imposing scan the filename for variable values. The command line
option -varfilter pattern can be used but for Switch we recommend the command line

option -switchvarfilter pattern. This checks the filename to see if it starts _xxxxx_ where xxxxx is five
alphanumeric characters. Switch adds this prefix to names. By using -switchvarfilter, we
automatically take the prefix off, and can be concerned with the original filename.

TUESDAY_ADVERT_273!44-3-2.pdf

In this example, we’ve used 44, 3 and 2 as the variable values. (The 273 is just part of the regular
name). We need to tell Quite Hot Imposing how to read these names, by typing a filter. To do that
we need to know the names of each variable we want to set. Let’s suppose that they are copies,
rows and columns. And we want to use them in that order.

The filter we use is
*l<copies>+<rows>+<columns>

Let’s break this down. The * at the start means “anything”, that is the normal part of the name.
Actually, almost anything. The normal part mustn’t have a ! mark because that is what starts the
variables.

Quite Hot Imposing 6.0 Advanced: variables (beta 1) 17

You can see that the filter has the names of the variables we want to use. We always put them like
this <name>. There is no < or > in the actual filename, this just tells Quite Hot Imposing that we have
a variable name.

The other things we see are ! (before <copies>) and + (between variables). These symbols ! and + are
not special, they are just what we want to put in the file name. There could be any number of
characters, including letters. Here are some different ways we might set for those three variables.

*.-<copies>-<rows>+<columns> example UPDATE_BOOKLET--44-3-2.pdf
*$(<copies>+<rows>$$<columns>) example PIC PAGE 15(44+3$52).pdf
* K=<copies> R=<rows> C=<columns> example LEGEND_42 K=44 R=3 C=2.pdf

To emphasise: the = is also not a special character. It just allows the filename to contain K= and so
on. You must have a separator between variables. For example you could not put <rows><columns>
directly because there is no way to know when <rows> finishes and <columns> starts. You also
cannot have an asterisk (*) immediately before or after a <variable> reference, there must be at
least one character between them.

The names have to exactly match. If they don’t match there will be an error message, and the file
will not be processed, because you probably don’t want to run a job without the settings.

This filter will force the variables to be at the end of the name. But if you want to allow more info
after the variables, just put a * at the end. If you want the variables to be at the start, remove the *
from the start. (Remember that using -switchvarfilter will already have removed the Switch prefix
XXXXX).

Some characters aren’t allowed, often because they aren’t allowed in file names. Never use any of
these: colon (:), forward slash (/), backwards slash (\), vertical bar (|), curly brackets ({ or }) or square
brackets ([or]). In Windows, you must not use question mark (?), double quote (") in a file name.

You can use -switchvarfilter multiple times and all the matching filters are used. For example

-switchvarfilter "* K=<copies> *"
-switchvarfilter "* R=<rows> *"
-switchvarfilter "* C=<columns> *"

This example would set the copies, rows and columns variables according to the filename. Notice
that we need a space around the strings, so that the names are separated from other variables. This
means that the filename would be required to have a space after each of these. You could add three
more rules

-switchvarfilter "* K=<copies>"
-switchvarfilter "* R=<rows>"
-switchvarfilter "* C=<columns>"

This would allow each of the items at the end as well (no * at the end of these patterns).

If no filter matches, no variables are set. There is no error at this point, but if you try to use a
variable that is not set, the job will fail.

Quite Hot Imposing 6.0 Advanced: variables (beta 1) 18

Working with Switch “user fields”

The Enfocus Switch configurator/app for Quite Hot Imposing offers three properties “User field 17,
“User field 2” and “User field 3”. You can use these for simple applications, though it is less flexible
than working with private data. It has the advantage that up to 3 values can be used directly on the
Quite Hot Imposing element, without need for any additional elements like scripts.

To use these you just need to use a special syntax when typing a variable. You type [User:1], [User:2]
or [User:3] — including the square brackets. These can be freely used in expressions, for example you
could type

[User:1]*2-1

Making Switch datasets available in Quite Hot Imposing
In Enfocus Switch, datasets are extra files that travel with a job. If you select . If you set “Connect
Switch Metadata” to “Private data + datasets”, all the datasets in the job are available in Quite Hot

Imposing.

Uther options

Connect Switch metadata
User field 1

User field 2

The default is ‘no’ so no info is passed from private data to Quite Hot Imposing. If you select ‘Private
data + datasets’ then all the variables set in private data are automatically available. You can use
datasets like regular files in these places:

e Variable data merge source

e Variable data merge file of pages to be inserted by reference from the data source
e Backgrounds for imposition

e Pages toinsert (“Insert pages” command)

e Pages to stick on (“Stick on pages” command)

To select a dataset, where you can choose a file or Browse, you will now see “Dataset...” as a choice.

Quite Hot Imposing 6.0 Advanced: variables (beta 1) 19

Stick on PDF pages >

W Select source of pages

Wi |Dataset... j

o Browse...
~ hanage lizt...
QT page FLmoeT W | I

fa ﬂ“

P ‘wihere to add pages
P Page: to process

P Scale and rotate

k. Cancel

If you choose Dataset, you now can type the name of the dataset, as defined in Switch.

Enter dataset >

Enter name of datazet [uged only in Guite Hot Impozing)

k. Cancel

As this example shows the name of the dataset could itself be set by a variable.

Passing export variables from Quite Hot Imposing back to Switch private data
Exporting variables is a way to get the values out of Quite Hot Imposing. If you set “Connect Switch

Metadata” to “Private data + datasets” then all the variables you export are automatically placed in
Switch Private Data.

Other options

Connect Switch metadata
User field 1
User field 2

You can set variables to export in various ways.

e You can use the Results button for certain commands, to pick up values specific to the
command, such as the number of rows or columns in an imposition, as described below.

e You can use a Set Variables command to set variables, and list the names to export, for
example

GRIDSIZE=ROWS * COLUMNS
EXPORT GRIDSIZE

Quite Hot Imposing 6.0 Advanced: variables (beta 1) 20

If you use
EXPORT *
all the variables are automatically exported to Switch private data

e You can use the -varexport name or -varexport "*" command line option as part of the

Other Options in the Switch flow element, which have the same effect as using EXPORT in a

Set Variables command.

e Variables can also be set using as described in Variables: Variables settings files, which have
the same format as the Set Variables command, or in a specific XML format. You can give the

variables setting file to read using the command line option -vars filename or -vars
dataset::datasetname .

In this example of the Results button, a sequence containing N-Up has results set for the N-Up
command. You can choose any names to export a private data, or go with the default names.

- Adjust page sizes - It - N-u
- Booklet —

- Condition Edit...
- Creep pages for binding -
- Define bleeds Add =
- |nzert pages E—

- Join bwo pages
- Manual imposgition: add page
- Marual imposgition: repeat
- Marnual imposgition: start
- Meszage

- M-up pages

- Page tools

- Peel off POF pages

- Peel off data merge

-

<< Remove

[T

Y'ou can take the results from this command and zet them as vaniables, or expart them [for example to
Enfocus Switch in Cuite Hot Imposing). Setting Export will alzo make a wanable.

" ariable--E sport--M amne

I [|nup_ma:-:_rn:nws k awimurmn rows on any sheet

| v |nup_ma:<_u:u:nlumns b aximum columns on any sheet
B B |nup_num_input_pages Humber of input pages

I [|nup_num_sheets MHumber of output sheets

Variables: command line options

This section describes all the command line options for Quite Hot Imposing that are related to
variables, and may duplicate information in other sections.

Setting variables
Individual variables are set with the -v:name option

-v:rowcount 3

Quite Hot Imposing 6.0 Advanced: variables (beta 1)

21

-v:caption "March edition"

The -v option can only give a variable’s full value, not an expression. All values are strings, but strings
that contain only digits are valid as numbers.

Variables can also be set using a variable file

-vars filename or
-vars:type:format filename

Means that the file is to be read as a list of variables.
Two formats are available

e Atextfile. This can be specified with -vars:text:simple, but it is also the default when -vars is
used. See “Variables setting files” for the format.

e An XML file with a specific set of tags which is based on the Enfocus “fields” format of XML,
but which can be easily generated from other apps. This is specified by -vars:xml:fields. This
is also described in “Variables setting files”.

Working with Enfocus Switch there is an additional feature

-vars dataset::datasetname or
-vars:type:format dataset::datasetname

Will read the variables file from a Switch dataset. A further shortcut for Switch is
-switchfields "list of datasets"

This takes a list of datasets separated by whitespace or commas, and for each of them is equivalent
to using -vars:xml:fields dataset::datasetname

These options can be repeated. The last value specified for a given variable name is the one used.
You should not rely on the order in which single variables and variable filenames are set if you mix
them.

Using filters to set variables

As described in the main Quite Imposing manual, filters can be used to look at file names and pull
variables from them. This happens automatically when using filters in watched folders. There are

many other ways to set variables by command line, but you can also use filters, so that file names,
controlled directly by the end user, can set variables.

-varfilter "filterstring"

Is used to specify a filter. It is important to realize that this does not in any way limit the files that are
accepted. If you have got as far as running the command line, the file will be used. But a filter can be
used to scan the file names that you have, and pull out variables. The syntax is exactly the same as
with watched folders, for example -varfilter "BOOKLET-<copies>,<title>".

You can use multiple -varfilter parameters. They are all processed, and variables are set if, and only
if, the filename matches the pattern. If more than one filter sets the same variable, the last one is
used. The filename here is the primary file — typically a single PDF, but possibly the name of a
directory. The name can be overridden with -jobname name. Filters always match names ending
.pdf, so there is no need to include this in the filter.

Quite Hot Imposing 6.0 Advanced: variables (beta 1) 22

Legacy feature — user variables
You can also continue to use the -User:name command line option, which was present in version
5.0, for setting user variables. This is exactly the same as -v:name.

User variables have been largely replaced by the new variables in 6.0, but you can still use the old
notation. For example, you can use [User:rowcount] in a string of text to stick on a page. User
variables can use numbers as names. This was the basis of “User parameter 1” etc in Enfocus Switch.
User variables can be referenced as [User:name] in an expression.

Specifying variables to export
Any variable might be exported. Quite Hot Imposing keeps a list of the names to export.

-varexport name can be used to add names to the export list, repeated as often as needed. This
name can use a different mixture of upper and lower case than the original name. For example if you
set a variable MyLabel, you can say -varexport MYLABEL, and MYLABEL is the name used in the
export, but the value is still the value of MyLabel.

-varexport "*" (asterisk) asks for all variables to be exported. The original case of the variable name
is preserved. For example if a variable is first referred to as NumRows that name will be used in the
export, even if it is later called NUMROWS or numrows.

Specifying how variables are exported
Variables can be exported to a file, or written to the standard error stream.

-exportvars filename specifies an output file. The file is written in the same text format expected for
input -vars files. Exporting happens at the end of the job.

-exportvars:type:format filename can be used to choose other formats. -exportvars:xml:fields
produces the XML fields format described in “Variables settings files”, and can be read using -
vars:xml:fields.

-exportmarker "string" to direct exports to output file stderr. Each line is prefixed with " string”. This
mechanism is used internally by Enfocus Switch and must not be set in the command lien in this
case.

Variables: Expressions

Using expressions (calculated values)
In many of the places that you could specify a variable name, you could also specify an expression.
For example instead of numrows you could put

e numrows-1

e (numrows+1)/2

e MIN(numrows,2)

e ROUNDUP(numrows/2)

These are all numeric expressions, but you can also work with strings. For example you can put

e "Chapter " & chaptername
e LEFT(filename,3)

You can make choices using the IF or CHOOSE functions. For example

Quite Hot Imposing 6.0 Advanced: variables (beta 1) 23

IF (numrows =0, 2, numrows + 1) -- means, if the number of rows is zero, use a value of 2,
otherwise use the value of numrows + 1.

CHOOSE (dayweek , "MON", "TUE", "WED" , "THU" , "FRI") —means, if dayweek is 1, use
the string "MON”, if it is 2 use "TUE" and so on.

You can use the special “fields” that were available in earlier versions for example

[Doc:NumPages]
[Doc:FileName] (can be used in expressions such as LEFT ([Doc:FileName], 3)

Arithmetic details (advanced)
You can make up arithmetic using a mixture of these things:

Names (which can contain letters, numbers and underscore only — for example there can’t
be a name SIZE-2). Names cannot include accented characters.

Numbers (including decimal point). Please use decimal point ‘.’ even if you would normally
use a comma ‘,’. That is, always use 3.5 but never 3,5 for three and a half.

Brackets, for example (A*3)/2

Operators * (multiply), + (add), - (subtract), / (divide). Note that division may create a
fractional number, for example 3/2 will be 1.5. To get whole numbers see QUOTIENT and
MOD below. Division by zero will produce an error.

Built in arithmetic functions:

o ABS(x) —the positive value of x, for example ABS(-3.5) is 3.5

o INT(x) —the closest whole number less than x, for example INT(4.5) is 4 and INT(-4.5)
is -5. The same as ROUNDDOWN(x,0).

o QUOTIENT(x,y) — divides x by y and returns the whole number. Examples:
QUOTIENT(10,3) is 3. QUOTIENT(-10,3) is -3.

o MOD(x,y) —divides x by y and returns the remainer. The answer is negative if y is
negative. Examples: MOD(10,3) is 1. MOD(100,10) is 0. MOD(10,-3) is -1.

o MAX(a,b,c,...) — the largest number value in a list. The list can contain numbers, or
strings of numbers separated by spaces. For example MAX("2 5","6 7 2") is 7.

o MiIN(a,b,c,...) — the smallest number value in a list

o ROUND(x) — rounds x to the nearest whole number. Also ROUND(x,digits) — rounds x
to the number of decimal digits given. If x is negative, rounds to powers of 10.
Examples: ROUND(123.46,1) is "123.5"; ROUND (123.46,0) is "123"; ROUND
(123.46,-1) is "120".

o ROUNDUP(x) or ROUNDUP(x,digits) — rounds up to the nearest whole number (or
number of decimal places from digits). Examples: ROUNDUP(2.0) is "2".
ROUNDUP(2.01) is "3". ROUNDUP(-1.9) is "-1". ROUNDUP(27.12,1) is "27.2".
ROUNDUP(22,-1) is "30".

o ROUNDDOWN(x) or ROUNDDOWN(x,digits) — rounds down to the nearest whole
number (or number of decimal places from digits). Examples: ROUNDDOWN(2.0) is
"2". ROUNDDOWN(2.01) is "2". ROUNDDOWN(-1.1) is "-2". ROUNDDOWN(27.89,1)
is "27.8". ROUNDDOWN(27,-1) is "20".

o RANDBETWEEN(low,high) —a random whole number between low and high
(inclusive).

Quite Hot Imposing 6.0 Advanced: variables (beta 1) 24

Strings in expressions (advanced)

Some commands will need strings, not just numbers. This includes cases like a list of margins: 1.0 2.0
1.0 2.0 is a string, because it isn’t just one number. You can work with strings in these ways:

String constants like "EXTRA WORDS" or "1.0 2.0". Note that the characters \ and " cannot
just be included in a string constant. For \ you need to put \\. For " you need to put either \"

or

A number is turned into a string if needed, and a string is turned into a number when
needed; there is usually an error if the string can’t be turned to a number when needed.
The operator & (ampersand) which joins two strings together, for example "EXTRA" &
"WORDS" is "EXTRAWORDS". Writing a & b is exactly the same as CONCAT(a,b).

Built in string functions for joining strings

O

CONCAT(stringl,string2,string3,...) — joins together a list of strings, for example
CONCAT ("ABC",7,"DEF") is "ABC7DEF"

LIST(string1,string2,string3,...) — like CONCAT but adds a space between each string,
for example LIST("ABC",7,"DEF") is "ABC 7 DEF"

REPT(string,count) — makes a string by repeating a string as many times as you ask.
For example REPT("ABC",3) is "ABCABCABC".

Built in string functions for taking part of a string

O

LEFT(string,num) — the first num characters in the string. For example
LEFT("EXTRA",2) is "EX".

RIGHT(string,num) — the last num characters in the string. For example
RIGHT("EXTRA",3) is "TRA".

MID(string,start,num) — num characters from the middle of the string, starting with
start — the first character is a start of 1. For example MID("EXTRA",2,3) is "XTR".
TRIMSPACES(string) — remove all spaces at the start or the end of the string
INLIST(string,num) — treat the string as a list, separated by any number of spaces.
Get an item from the list, where num is 1 for the first item. Spaces at the start and
end are ignored. For example INLIST("10 9 8",2) is "9" If there is no such item,
returns an empty string.

Built in string functions for searching in strings

O

TEXTAFTER(string,afterstring,instance) — searches for "afterstring" in "string", and
returns all the text after "afterstring". If "afterstring" is not found, returns the whole
of "string". For example TEXTAFTER("alpha-beta.pdf","-") is "beta.pdf". The
“instance” is optional and defaults to 1, returning the text after the first instance of
“afterstring”. If instance is greater than 1, the search continues for instance instance
of “afterstring”. If instance is less than 0, the search starts at the end, so an
“instance” of -1 returns text after the last instance of “afterstring”.
TEXTBEFORE(string,beforestring,instance) — searches for "beforestring" in "string",
and returns all the text before "beforestring". If "beforestring" is not found, returns
the whole of "string". For example TEXTBEFORE("alpha-beta.pdf","-") is "alpha".
instance defaults to 1 and has the same meaning as in TEXTBEFORE.
FIND(findstring,instring,startchar) — searches for "findstring" in "instring", starting at
character startchar within instring; the first character number is 1. If startchar is
omitted it is assumed to be 1. Returns the character number where findstring
begins in instring, or 0 if it is not found. The search is case dependent (upper/lower
case must match), and there are no wildcard characters. Note: do not search for

Quite Hot Imposing 6.0 Advanced: variables (beta 1) 25

O

accented characters like "é" in file names on macQS, as they may not match.
Examples:

= FIND("-42","F-420") = 2.

= FIND("","Anything",3) is 3.

* FIND(".PDF","File.pdf") is -1.

= FIND(".pdf","File.pdf") is 5.

* FIND("AL","AL-AL",2) is 4.

* FIND("Zip","Zip") is 1.

= FIND("Z*","Zip") is -1.

= MID("ALPHA-BETA",FIND("-","ALPHA-BETA")+1,999) is "BETA"
CONTAINS(findstring,instring) — searches for "findstring" in "instring; returns "TRUE"
if found and "FALSE" otherwise. Equivalent to (FIND(findstring,instring,1) >0

e Built in string functions for replacing text in strings

O

INSERTBEFORE(oldstring,beforestring,insertstring) — searches for "beforestring" in
"oldstring". Inserts the string "insertstring" before "beforestring". If " beforestring "
is not found, the string "insertstring" is added at the start of "oldstring". Examples:
INSERTBEFORE("alpha.pdf",".","-next") is "alpha-next.pdf". INSERTBEFORE ("alpha-
beta.pdf","!","gamma") is "gammaalpha-beta.pdf".
INSERTAFTER(oldstring,afterstring,insertstring) — searches for "afterstring" in
"oldstring". Inserts the string "insertstring" after the end of "afterstring. If
"afterstring" is not found, the string "insertstring" is added at the end of "oldstring".
Examples: INSERTAFTER("alpha-beta.pdf","-","gamma") is "alpha-gammabeta.pdf".
INSERTAFTER("alpha-beta.pdf","!","gamma") is "alpha-beta.pdfgamma".
REPLACE(oldstring,startchar,numchar,newstring) — replaces characters in oldstring
with newstring. The first character to replace in oldstring is at startchar (first
character is 1). The number of characters to replace is numchar. Examples:
REPLACE("abcde",2,3,"-") is "a-e" and REPLACE("first/last",1,5," new") is "new/last".

e Miscellaneous string functions

O

UNICHAR(number) — converts a number to a Unicode character as a string. For
example UNICHAR(8364) returns "€", the Euro character.

UUID() — returns a UUID, a common standard for (almost certainly) unique strings.
Each time you call UUID() it will give a different answer. For example UUID() one
time returned "03962e5e-fc60-4780-8fd4-12f7f67314dc". The result is always made
of letters "a" to "f" and digits separated by dashes. The lengths of each part of the
UUID are 8-4-4-4-12. A UUID cannot be used to identity the user or computer that

created it.

Booleans in expressions (advanced)

Booleans are a string with the value "TRUE" or "FALSE". Unlike some other languages, numbers
cannot be used instead. The strings can be upper or lower case, so "TRUE", "True" and "true" are
equivalent. There is an error if anything other than the specified strings are used. The names TRUE
and FALSE do not exist.

e Operators = (equal), <> (not equal), <, >, <= and >= are used to compare numbers or strings

O

Where both sides are a valid number, even in a string, the comparison is done using
the numeric value. So 1 =1.0 and "2" ="02" are both the "TRUE".

Where strings are compared, upper and lower case are ignored, so "Aa" ="aA" is
"TRUE".

Quite Hot Imposing 6.0 Advanced: variables (beta 1) 26

o This can only be relied upon for unaccented Latin characters. When comparing other
alphabets, or accented characters, the results may depend on system settings.

o These alternative forms are allowed: == (two equals signs) for =; |= for <>.
AND(bool1,bool2) — return "TRUE" if both booll and bool2 are "TRUE".
OR(bool1,bool2) — return "TRUE" if either or both booll and bool2 are "TRUE".
NOT(booll) —swaps "TRUE" to "FALSE" and "FALSE" to "TRUE"
ISODD(value) — return "TRUE" if the value is a number and is odd, "FALSE" if the value is a
number and is even, and gives an error if the value is not a number. If the number is not a
whole number, the effect is the same as using INT() first, so ISODD(3.6) is "TRUE" and
ISODD(-3.6) is "FALSE". Similarly ISEVEN(value).
ISNUMBER(value) — return "TRUE" if the value can be understood as a number, "FALSE"
otherwise.
ISBLANK(value) — return "TRUE" if the value is an empty string "". 0 and "FALSE" are not
blank.
BOOL(value) — convert a value to a Boolean as follows. If it is a number, or a string containing
a number, then 0 returns "FALSE" and all other values return "TRUE". If it is a non-numeric
string, and is "TRUE" or "FALSE", this is used. Otherwise there is an error.

Controls in expressions (advanced)
These let you choose among different options.

CHOOSE(index,option1,option2,option3,...) chooses just one of the options, depending on
the index number. If index is 2, for example, option2 is chosen. If index is less than 1, option
1is chosen. If index is more than the number of options, the last option is chosen.
IF(test,true_option,false_option) chooses either true_option or false_option, depending on
the test. The test must be "FALSE" or "TRUE". For example, IF(A<0, 0, A) or IF (ISEVEN(A)
JALA-1)

Files, filenames and jobname in expressions (advanced)

JOBNAME() — the name of the current job, often the name of the source file. It comes from
one of these sources, highest priority first
o If the command line contains a -jobname value this is used
o If the command reads from a directory, then the directory name (without its parent
directory). When Quite Hot Imposing is reading queues, this is the case of a job
folder, so the job folder name is used.
o The command reads from a file. The filename (without its parent directory) is used.
(If it reads from multiple files, the first is used).
o If the jobname ends .pdf, the .pdf is removed. If a command has multiple sources,
the first source is used.
TARGETPATH() — the full path name (directory and filename) where the result will be
written.
DIRNAME(filestring) — if filestring is a full file name, gives the directory part of the name. This
will NOT end in a directory separator (/ or \). If filestring does not contain a directory
separator, then filestring is returned unchanged. This only looks at the text, it does not check
whether the result is a directory or whether it exists.
BASENAME(filestring) — if filestring is a full filename, gives the last part of the name, that is
the filename without any directory). If filestring does not contain a directory separator, then

Quite Hot Imposing 6.0 Advanced: variables (beta 1) 27

filestring is returned unchanged. This only looks at the text, it does not check whether the
file exists, or whether it is actually a directory.

e BASENAMENOPREFIX(filestring) — like BASENAME, but if the result would start _xxxxx_
(underscore, exactly five letters, underscore), this part is removed. This is useful in Enfocus
Switch, where working files often have a prefix in this style added. Note that since a
filename with no directory separator is returned unchanged by BASENAME, this function can
be used on a plain filename without directory.

e BASENAMENOSUFFIX(filestring) — like BASENAME, but removes the file type, which is
everything from the last dot to the end. If there are multiple filetypes, removes only the last
one.

o BASENAMENOPREFIXSUFFIX(filestring) — combines BASENAMENOPREFIX and
BASENAMENOSUFFIX.

Page size functions (advanced)

These functions return information on the pages of the current source PDF. If used in a context
where there is no specific source PDF, they all return an empty string. They return a string list of
numbers, for which the INLIST function might be useful.

e PAGESIZE(frompage, topage,[type]]) returns the size of one or more pages (range from
frompage to topage) as a string separated by blanks. Each size is two numbers in the string,
in the order width height. For all pages set topage to a large number or -1. The type is a
string saying which of the different page sizes to use. The default is "crop" which is the size
visible in Acrobat and most other viewers (for an uncropped page it is the original size). Valid
types are "crop", "bleed" (bleed exterior), "trim" (bleed interior). Values are returned in
points, and the result can be converted to inches, cm or mm using PTIN(), PTCM() or
PTMM(). Example: PAGESIZE(2,2,"crop") — returns the page size as cropped in points with 2
decimal places such as "720 612". PTIN(PAGESIZE(2,2,"crop")) would return "10 8.5".

e PAGEWIDTH(frompage,topage,[type]) is like PAGESIZE but returns only the widths. Example:
PAGEWIDTH(1,-1,"") returns the widths of all pages in mm, with the default number of
decimals. This is convenient for use with MAX and MIN functions. For example, 4 pages
mixing landscape and portrait might return "612 720 612 612". In this case
MAX(PAGEWIDTH(1,-1,"")) would return 720.

e PAGEHEIGHT(frompage,[topage],[type]) is like PAGEWIDTH but returns a list of heights.

e INPT(x) convert inches to points. For example INPT(2) returns 144. Each of these conversion
routines accepts a string listing numbers for example INPT("2 1.5") returns "144 108".

e MMPT(x) convert mm to points

e CMPT(x) convert cm to points

e PTIN(x) convert points to inches

e PTMM(x) convert points to mm

e PTCM(x) convert points to cm

Quite Imposing fields (advanced)

You can use the fields available in stick on text and other places by just including them in square
brackets. You can’t make use of the fields which apply only to the current page. Fields that refer to
the current file (such as [Doc:NumPages]) cannot be used when reading variables files before the
job, but can be used in any Set Variables command. Useful examples may include

e [Doc:FileName] — the filename part only
e [Doc:FileNameNoSuffix] — the filename part only (removing .pdf)

Quite Hot Imposing 6.0 Advanced: variables (beta 1) 28

e [Doc:FileNameNoPrefix] — the filename part only (removing a prefix added by Enfocus
Switch)

e [Doc:FullFileName] — the complete path name

e [Doc:NumPages] — the number of pages

o [Date:%Y/%m/%d] — the date as yyyy/mm/dd.

e [Info:Title] —the document title from metadata.

e [User:name] — the user variable name. You can just use the name alone without square
brackets and User:, except where the name is a number. A name can only be a number if it is
set as a “user field”, for example in the Enfocus Switch flow setup. In this case you might use
a form like [User:1].

For example [Doc:FileNameNoSuffix] & "-1.pdf" will turn a filename of Extra.pdf into Extra-1.pdf (this
doesn’t rename a document, just makes a string).

You can also use a vertical bar "|" in a field. What is after the bar is the default, for example:

e [User:alpha|3] - the variable alpha, or if it not set, the value 3.
e [User:alpha|nothing] — the variable alpha, or if it not set, the string "nothing".

e [User:alpha]|] —the variable alpha, or if it not set, the empty string "".

A string in [] brackets which is not recognised and does not contain a vertical bar is left alone,
keeping the brackets unchanged. It will be treated as a string including the brackets.

Variables: Variables settings files

Variable settings files contain a list of variables to set. They are nothing to do with data merge.
Variable settings files are used in two places

e They can be in files, read before starting the job

e They can be used with the Set Variables command in sequences, to set extra variables during
execution. In this case the contents of the file are just edited in a window (you can paste
from a file, but there is no specific connection to a file). These might use variables set earlier,
or results from previous steps. They can be used in Condition commands, so they can be set
only when certain contains are met.

Text Format
Variable files are simple text files which list variables and values. For example a file might contain

COPIES=3
ADDTEXT="Volume 4"

This sets the variables COPIES and ADDTEXT. All values can be in quotes, but numbers need not be.

A variable file can have comments, which start on any line with # or //. If these need to be part of a
value, the value must be in quotes. A file can also have blank lines.

Variable files are expected to use UTF-8 encoding for text.
The value can be an expression like
ADDTEXT=CONCAT(BOOKTITLE," (PROOF)")

Expressions are described in a Variables: Expressions.

Quite Hot Imposing 6.0 Advanced: variables (beta 1) 29

Certain characters are special in a string. For example, you cannot simply use " when you want a
qguote, because it will end the string. There are two different ways you can specify a quote in a string.
For example to set NAME to THE "REAL" THING you can use either

o NAME="THE ""REAL"" THING" — doubling up each quote
e NAME="THE \"REAL\" THING" — using \ as an escape and \" to mean a quote

You also cannot simply use \ in a string, because it is part of an escape. So \ must be written as \\.
This is important for file names in Windows.

Other commands in a variables file

There may be other commands in a variables file. Currently only MSG and EXPORT are supported.
Commands are recognised as not setting a variable because the command name is not followed by
‘=", Incorrect commands may be ignored without error.

MSG expression

causes the current value of the expression to be written as a message. In Quite Hot Imposing, this
implies it is written to the log file (using watched folders or Enfocus Switch) or to the command
output (using command line). MSG can be used to check that variable values are as expected or
follow progress. Examples

MSG "Variable information follows"
MSG "Widthis" & WIDTH & ", heightis" & HEIGHT

EXPORT name

adds name to the list of variables to be exported. It does not set a value to export, nor cause the
export to happen at that time. Exporting happens at the end of the job, with the current value of the
named vaiable. If name is *, this means that all variables will be added. The effect of EXPORT is the
same as using the -varexport command line parameter.

Using the Set Variables command

The Set Variables command can be used in any automation sequence when variables are enabled.
The syntax is exactly the same as the variables text files, but no actual file is read. It can be used
between commands, before the first command, or after the last command. Some possible uses of
the Set Variables command include:

e Setting calculated values so that calculations do not have to be repeated many times, or
simplify calculations by making them in several steps.

e Having a sequence which uses variables internally, for example sets rows, columns and
copies in a Set Variables commands at the start. Changing the sequence may be more
efficient this way.

e Adding documentation or information about the sequence, since the file can include
comments starting # or //.

e Conditionally setting variables, using a Condition command. For example you could set
variables based on number of page sizes, metadata in the PDF, or file names.

e Listing variables to export

e Writing variable values or messages to the job log

Note that if you want to set defaults, most methods will not work because any reference to an
undefined variable will give an error. You can set variables in this way:

Quite Hot Imposing 6.0 Advanced: variables (beta 1) 30

var_name=[User:var_name|default value]

since the form [User:variablename | default] sets the default rather than giving an error.

Other variable file formats

The default variable file format is the lines of text described above, but additional formats might be
used. They can be used from the command line but cannot be used as an alternative for the Set
Variables command.

XML Fields format

Some application environments might make it easier to process XML files than text files. This is the
case with Enfocus Switch, a separate app that can interface to Quite Hot Imposing. There are many
possible XML formats, and we only process one specific format. More XML tags can appear and will
currently be ignored. The XML format looks like this for namel=valuel name2=value2.

<field-list>

<field>
<tag>namel</tag>
<value>valuel</value>
</field>

<field>
<tag>name2</tag>
<value>value2 </value>
</field>

</field-list>

As many fields can be included as you wish. The following rules are applied to working with the

names.

1. Any space in the name is replaced by an underscore.

2. If the name contains parentheses (round brackets), everything is ignored except the part
inside the parentheses. For example a name text of “Number of columns (cols)” will set a
variable name of “cols” only.

3. After these changes to the name, if there is anything other than upper or lower case
unaccented English letters, digits, or an underscore, then no variable is set.

The variable value is treated as text, is not converted or limited.

To read a file in XML fields format, use the command line option -vars:xml:fields filename. You can
also export (see below) in this format using -exportvars:xml:fields filename.

Using variable files
Multiple files might apply. All variable definitions are processed and the LAST one encountered is the
one that is used.

When Quite Hot Imposing is watching a folder, the folder can contain a file gvars.txt. If this file is
found, it will be used for each job to set the variables.

When Quite Hot Imposing is reading a job folder, this folder can contain a file gvars.txt. If this file is
found, it will be used for this job only. This is read after any watched folder gvars.txt, so if a variable
is defined in both places, the job folder file takes precedence.

Quite Hot Imposing 6.0 Advanced: variables (beta 1) 31

When using the command line, the command line parameter -vars filename can be set to specify
variable files to read. (Also -vars:xml:fields) The option can be used more than once, and all the files
are read in order, to set variables in the order specified.

When using Enfocus Switch, the Hot Imposing app or configurator can be used to set variables from
Switch private data. When the option is set, all Switch private data is automatically used to set
variables, provided the private data value has a suitable name.

When using Enfocus Switch the command line parameter -vars filename can also be set. The
form -vars dataset::datasetname can also be used.

When using Enfocus Switch the special command line option -switchfields /ist takes a list of dataset
names, and reads each of them as if specified with-vars:xmil:fields.

Note that single variables can be set in the command line. -v:key "value" (or the legacy

option -User:key "value") continues to be available in command line, in Switch, and in advanced
gueue options. Currently, these are all overridden by definitions in variable files, but this may change
without notice. Unlike a variables file, the value cannot be an expression, it must be a simple string
or number. -v:rows 3 is allowed, -v:rows value+2 is not allowed.

Summary of options by environment

Option Watched Enfocus Command | Value can be Can refer to
folder Switch line expression document

gvars.txt in Yes - - Yes No

watched folder

gvars.txt in job Yes Yes Yes Yes No

folder

-vars command Yes Yes Yes Yes No

line

-vars - Yes - Yes No

dataset::name

-v:key value Yes Yes Yes No No

-User:key value Yes Yes Yes No No

Set Variables Yes Yes Yes Yes Yes

command

Export of variables and variable files

It can be useful to pass information out of Quite Hot Imposing. Exporting is based on a list of names
only. When the process is finished, the list of names is checked, and the matching values are
exported in a number of possible ways. Exporting is always based on the final value of a variables.

What you export can be

e The value of a variable you set at the start
e The value of a variable you calculated (in a Set Variables command)
e The value of the result of a command (see below)

You can export to a file (chosen in advance), or you can export to the Quite Hot Imposing output if
using the command line. In Enfocus Switch you can export to private user parameters.

You can also specify that the results from particular commands are automatically exported.

Quite Hot Imposing 6.0 Advanced: variables (beta 1) 32

Managing the list of names to be exported

In Enfocus Switch, the option Connect Switch metadata: Private data + datasets is most often used.
This option is used in a Switch Flow setup. It automatically exports ALL variables to Switch Private
Data. There is no need to give a list.

Quite Hot Imposing, used with the command line, has option -varexport name to add names to the
export list. -varexport "*" causes all variables to be exported.

Quite Hot Imposing also has the option -exportvars filename to specify an output file. The file is
written in the same format expected for input -vars files.

For command line use only, Quite Hot Imposing has -exportmarker "string" to direct exports to
output file stderr.

Variables files, read at startup or used in a sequence with the Set Variables command can contain a
line

EXPORT name

which also adds name to the list to export, or you can use
EXPORT *

for all names (including those not yet set).

Working with command results

It is often useful to get information from a command, and pass it back out of Quite Hot Imposing, to
some other process. Only certain commands will set results. If Results are available, the Results
button in the Sequences editor will be available.

In this example, the Step & Repeat command has been highlighted at the right hand side, and the
Results button is available.

Quite Hot Imposing 6.0 Advanced: variables (beta 1) 33

Create or edit sequence - 1 x

To add commands for autamation, select them in the left hand column and click Add. Either
1. Select a command name. “'ou will be prompted for the command optiong. Or,

2. If vau have uzed Remember Last, the saved comnpasds e added without an extra prompt.

- M anual impogition: add page
- M anual impogition: repeat

- M anual impogition: start

- Mezzage

- M-Lp pages

- Page tools Feszults...

- Peel off PDF pages
- Peel off data merge

[T 1§ 1

- Adjust page sizes ~ Irnpart... E2E Step and repeat
- Booklet

- Condition Edit...

- Creep pages for binding

- Define bleeds Add »

- |neert pages

- Join bwo pages << Remove

W

v Allows variables in commands [advanced) Has variables: YES

i

Mext Cancel

When Results is clicked, a dialog like this one will appear.

Rezultz handling =

You can take the results from thiz command and set them az wariables, or export them [for example to
E nfocuz Switch in Quite Hot Imposging). Setting Expart will alza make a variable.

" ariable--E wpart--M ame

[|nup_ma:-:_r-:uws b airum rows on any sheet
|nup_ma:-:_u:u:ulumns b axirium columnz on any sheet
|nup_num_input_pages Humber of input pages
|nup_num_sheet$ Mumber of output sheets

|step_min_pages_per_sheet kinimum pages on any sheet

|step_ma:-:_pages_per_sheet M arimum pages on any sheet

1 1 O O O
a1 1 O O O O

|step_tl:utal_pages_all_sheets Total pages on all sheets

] Cancel

e If you do not check any boxes, nothing will happen (no results are saved, even if you change
the name).

e If you click the Variable box but not the Export box, a variable is set, which can be used in
later steps. You can use the suggested name (like nup_max_rows) or type a different name.

e If you click the Export box a variable is set, AND the variable is marked for exporting.

Quite Hot Imposing 6.0 Advanced: variables (beta 1) 34

Results available
The list of Results available is subject to change but currently it is as follows:

N-Up Pages: maximum rows on any sheet; maximum columns on any sheet; number of input pages;

number of output sheets.

Step and Repeat: as N-Up pages, with the addition of: minimum repeated pages per sheet;
maximum repeated pages per sheet; total pages placed (total of all copies).

Repeat Manual Imposition: number of input pages added by repeat; total sheets used by repeat;
sheet number where the repeat started.

Variable Data Merge: number of rows used; number of rows skipped.

Variables: specifying variables in XML command sequences
Please contact Quite if you would like to add variable definitions to an XML command sequence.

Quite Hot Imposing 6.0 Advanced: variables (beta 1)

35

	Quite Hot Imposing 6.0 Advanced: variables (beta 1)
	Variables: setting in sequences
	Why variables?
	Adding variables in a sequence of commands
	Setting the variables – using filenames
	Setting the variables – another way (file in IN folder)
	File names in variables
	Page sizes / backgrounds in variables
	Dimensions in variables (inches, mm, points etc.)
	Lists in variables (list of page numbers, list of spacing etc.)
	Variables in the Condition command
	Case independent variable names

	Variables: using variables with watched folders
	Using filters to set variables from file names
	Multiple filters for the same input folder

	Introduction to variable settings files

	Variables: using variables with Enfocus Switch
	Importing Switch private data as Quite Hot Imposing variables
	Setting variables from submit point “fields” XML format
	Setting variables using filename filter
	Working with Switch “user fields”
	Making Switch datasets available in Quite Hot Imposing
	Passing export variables from Quite Hot Imposing back to Switch private data

	Variables: command line options
	Setting variables
	Using filters to set variables
	Legacy feature – user variables
	Specifying variables to export
	Specifying how variables are exported

	Variables: Expressions
	Using expressions (calculated values)
	Arithmetic details (advanced)
	Strings in expressions (advanced)
	Booleans in expressions (advanced)
	Controls in expressions (advanced)
	Files, filenames and jobname in expressions (advanced)
	Page size functions (advanced)
	Quite Imposing fields (advanced)

	Variables: Variables settings files
	Text Format
	Other commands in a variables file

	Using the Set Variables command
	Other variable file formats
	XML Fields format

	<field-list> <field> <tag>name1</tag> <value>value1</value> </field> <field> <tag>name2</tag> <value>value2 </value> </field> </field-list>
	Using variable files
	Export of variables and variable files
	Managing the list of names to be exported
	Working with command results
	Results available

	Variables: specifying variables in XML command sequences

